Low Noise, Dual EL Lamp Driver Demoboard

General Description

The Supertex HV845DB1 demoboard contains all necessary circuitry to demonstrate the features of the HV845 dual EL lamp driver.

Simply connect it to a power supply and a lamp as shown below. For additional assistance in designing EL driver circuits, please refer to application notes *AN-H33* (effect of external components on performance of Supertex EL drivers).

Specifications

Parameter	Value
V _{DD} input voltage:	3.0V
V_{IN} inductor supply voltage:	3.3 - 4.2V
Supply current:	13mA
Lamp size:	2.3in ²
Lamp frequency:	195Hz
Converter frequency:	98kHz

Board Layout and Connection Diagram

Actual Size: 17.3mm x 14.4mm

Connections:

Controls C₁ and C₂: Lamp Selection

Various modes of the device are selected via the C₁ and C₂ pins. When C₁ is connected to V_{DD}/GND, Lamp 1 (EL₁) will be ON/OFF. When C₂ is connected to V_{DD}/GND, lamp 2 (EL₂) will be ON/OFF. When both C₁ and C₂ are connected to GND, the device shuts down. These inputs may be connected to a mechanical switch, or to a logic circuit output that has a source impedance of less than 20kΩ.

V_{DD}: IC Supply

Supplies the HV845 EL driver IC. The supplied circuit is optimized for 3.0V operation.

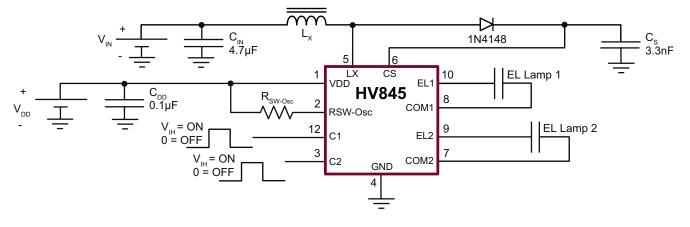
V_{IN}: Inductor Supply

Supplies the high voltage power converter. The demoboard is optimized for 3.3V to 4.2V operation.

GND: Circuit Ground

Connect to V_{DD} and V_{IN} negative terminals. Supply bypass capacitor for both V_{DD} and V_{IN} are provided on the demoboard. External supply bypass capacitors are not necessary.

EL₁ and EL₂: Lamp Connections


Connects to lamps 1 and 2. Polarity is irrelevant.

Com1 and Com2: Lamp Connections

Connects to the other side of lamps 1 and 2. Polarity is irrelevant.

HV845DB1

Figure1: HV845DB1 Circuit Schematic

Typical Performance The specific external components used in the above circuit are: $R_{sw} = 845k\Omega$, $L_x = 330\mu$ H Coilcraft (LPS3010-334ML), $C_s = 3.3nF$ 100V NPO. The following performance was observed when driving $EL_1 = 1.3in^2$ and $EL_2 = 0.93in^2$ green lamps.

V _{DD} (V) V _{IN} (V) Lamp			I (m A)		£ (11-)	Lamp Brightness (cd/m²)	
	I _{IN} (mA)	V _{CS} (V _{PEAK})	f _{EL} (Hz)	EL	EL ₂		
3.0	3.3	EL ₁ ON	8.96	88	195	17.04	-
3.0	3.3	EL ₂ ON	6.96	88	195	-	16.36
3.0	3.3	EL_1 and EL_2 ON	12.35	88	195	16.17	14.72
3.0	3.7	EL ₁ ON	7.65	88	195	17.45	-
3.0	3.7	EL ₂ ON	5.98	88	195	-	16.78
3.0	3.7	EL_1 and EL_2 ON	11.13	88	195	16.64	15.79
3.0	4.2	EL ₁ ON	6.19	88	195	17.71	-
3.0	4.2	EL ₂ ON	4.79	88	195	-	17.20
3.0	4.2	EL_1 and EL_2 ON	8.51	88	195	17.27	16.20

Bill of Materials

Part	Description	Package	Manufacturer	Part Number
L _x	330µH Inductor		Coilcraft	LPS3010-334ML
Cs	3.3nF, 100V, NPO chip capacitor	0805	Novacap	0805N332K101NT
R _{sw}	1%, 845k Ω chip resistor	0805	Any	
C	4.7µF, 10V ceramic chip capacitor	0805	Any	
C _{DD}	0.1µF, 16V ceramic chip capacitor	0805	Any	
Diode	100V fast recovery diode	SOT-23	Diodes Inc	1N4148
U1	EL driver IC	12-Lead QFN	Supertex Inc	HV845K7-G

The above circuit may need to be optimized further based on specification of the lamp used.

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the *Supertex inc.* (website: http://www.supertex.com)

©2010 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

