
# Supertex inc.

## **Application Note**

## **Understanding MOSFET Data**

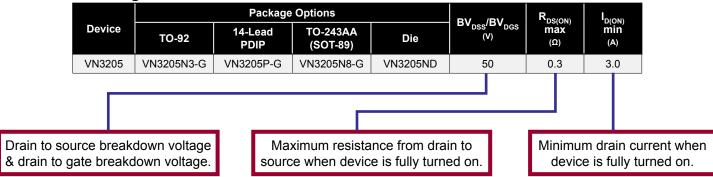
The following outline explains how to read and use Supertex MOSFET data sheets. The approach is simple and care has been taken to avoid getting lost in a maze of technical jargon.

The VN3205 data sheet was chosen as an example because it has the largest choice of packages. The product nomenclature shown applies only to Supertex proprietary products.



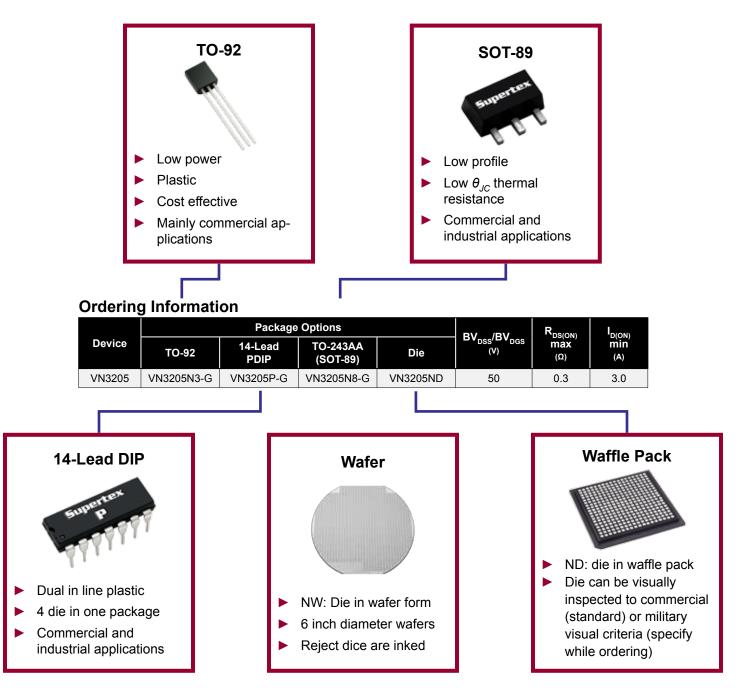
### Advanced DMOS Technology

This enhancement-mode (normally-off) DMOS FET transistors utilize a vertical DMOS structure and Supertex's wellproven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and negative temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.


Supertex vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speed are desired.






#### N-Channel Enhancement-Mode Vertical DMOS FETs

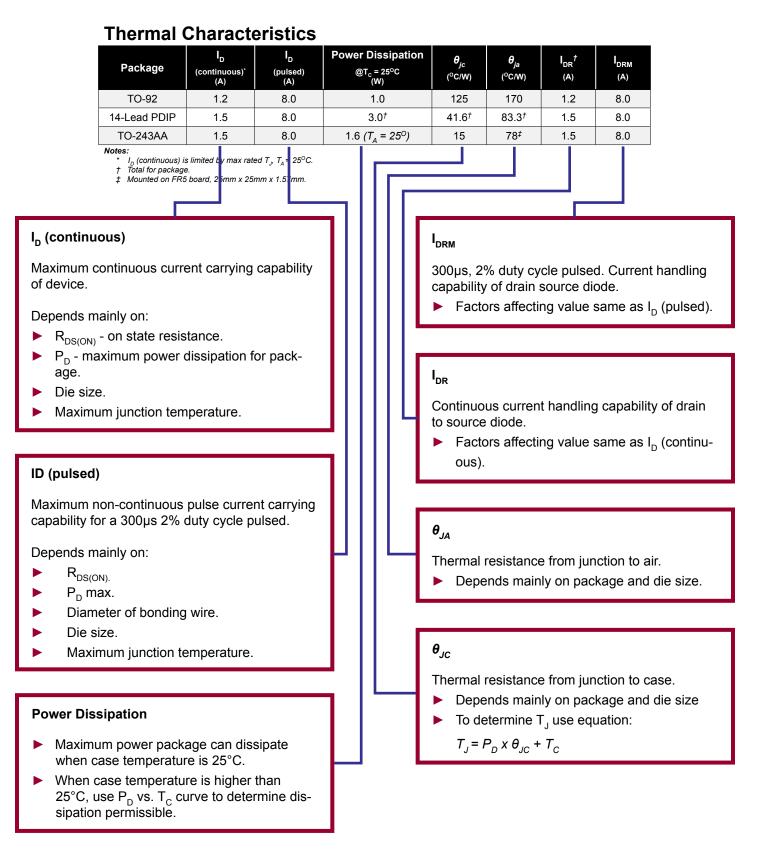
#### **Ordering Information**



## AN-D15

## **Package Options**




## Absolute Maximum Ratings

| treme conditions a device can be subjected<br>electrically and thermally. Stress in excess                                                                                                  | Parameter                                                                                                                                             | Value             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| nese ratings will usually cause permanent                                                                                                                                                   | Drain-to-source voltage                                                                                                                               | BV <sub>DSS</sub> |
| damage.                                                                                                                                                                                     | Drain-to-gate voltage                                                                                                                                 | BV <sub>DGS</sub> |
|                                                                                                                                                                                             | Gate-to-source voltage                                                                                                                                | ±20\              |
| atings given in product summary.                                                                                                                                                            | Operating and storage temperature                                                                                                                     | -55°C to +150°C   |
|                                                                                                                                                                                             | Soldering temperature*                                                                                                                                | +300°C            |
| ost Supertex FETs are rated for ±20V.<br>oltage handling capability allows quick<br>n off by reversing bias.<br>ternal protection should be used<br>ten there is a possibility of exceeding | voltages are referenced to device ground. * Distance of 1.6mm from case for 10 seconds. Maximum allowable temperature soldering, 1.6mm away from case |                   |
| Stress exceeding ±20V will<br>insulation degradation and<br>ure.                                                                                                                            |                                                                                                                                                       | e for 10 seconds. |

### **Thermal Characteristics**

Device characteristics affecting limits of heat produced and

removed from device. Die size,  $R_{DS(ON)}$  and packaging type are the main factors determining these thermal limitations.



## **Electrical Characteristics**

| Symp       Parameter<br>Works       Other location       Min       Ty       Max       Units       Condition         Voide       Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BV pass       Gate threshold voltage       0.8       -       2.4       V       Voltage Voltage         AV gate       Change in Voltage       0.8       -       2.4       V       Voltage Voltage         AV gate       Change in Voltage       0.8       -       2.4       V       Voltage Voltage         AV gate       Change in Voltage       -       1.0       100       inA       Voltage 200         Av gate       Change in Voltage       -       -       1.0       inA       Voltage 200         Voltage       Care date voltage drain current       -       -       1.0       inA       Voltage 200         Voltage       Care date voltage drain current       -       -       1.0       inA       Voltage 200         Voltage       Change in Polic       -       0.43       -       -       0.43       -         Voltage       Change in Police       -       0.3       0       Voltage 200       -       -       0.43       -       -       0.43       -       -       0.43       -       -       0.43       -       -       0.43       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BV_bss       Please see product summary (part I).         Vestore          Vestore         Vestore         Vestore         Vestore         Vestore         Vestore         Vestore         Vestore         Vestore         Vestore         Vestore         Vestore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Woss       Gate body leakage current       -       1.0       100       nA       Voss = 0X.         Voss       Zero gate voltage drain current       -       -       1.0       mA       Voss = 0X.         Voss       Zero gate voltage drain current       -       -       1.0       mA       Voss = 0X.         Voss       On-state drain current       -       0.0       nA       Voss = 0X.         Voss       Static       TO-32 and PDIP       -       0.45       Q       Voss = 0X.         Routine       TO-32 and PDIP       -       0.45       Q       Voss = 0X.       Voss = 0X.         Routine       TO-32 and PDIP       -       0.33       Q       Voss = 0X.       Voss = 0X.         Routine       TO-32 and PDIP       -       0.35       Q       Voss = 0X.       Voss = 0X.         Case       Reverse transfer capacitance       -       2.0       300       rs       Voss = 0X.         Case       Reverse transfer capacitance       -       2.0       300       rs       Voss = 0X.         Voss = 0X.       Sistic       Fall time       -       -       1.6       Voss = 0X.         Voss = 0X.       Voss       Sistit       Rever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Work       Isola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| None       Long       Zero gate voltage drain current       -       -       1.0       mA       Vois = 0.8 h         Voise       On-state drain current       -       -       1.0       mA       Vois = 0.8 h         Voise       On-state drain current       -       -       0.45       -       A       Vois = 0.8 h         Voise       Static       TO-92 and PDIP       -       -       0.45       0       Vois = 0.8 h         Brocow       TO-92 and PDIP       -       -       0.45       0       Vois = 0.8 h         Cosis       Change in Posicow       TO-92 and PDIP       -       -       0.3 d       Vois = 0.0 h         Cosis       Change in Posicow       To-92 and PDIP       -       -       0.3 d       Vois = 0.0 h         Cosis       Change in Posicow       To-92 and PDIP       -       -       0.3 d       Vois = 0.0 h         Cosis       Change in Posicow       To-92 and PDIP       -       -       0.3 d       Vois = 0.0 h         Cosis       Change in Posicow       To-04 delay time       -       -       2.0 d       0 h       Vois = 0.0 h         Vois = 20V.       Vois = 0.0 h       To-04 delay time       -       -       2.0 h<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BV <sub>DSS</sub> Please see product summary (part I). Please see product summary (part I). Positive temperature coefficient. See curve BV <sub>DSS</sub> vs. T <sub>J</sub> . Vs. Vs. State frain current 3.0 (pr. 10.10, pr. 1 |
| BV DSS       Please see product summary (part I).         Positive BV DSS vs. T <sub>J</sub> .       Please see product summary (part I).         Positive BV DSS vs. T <sub>J</sub> .       Please see of device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BV DSS         Please see product summary (part I).         Positive temperature coefficient. See curve BV DSS vs. T <sub>J</sub> .         Vs. B         Vs. Vs. B         Vs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wpss       Image: Implementation of the second                                                                                                 |
| Woscow       outce<br>on-state       TO-32 and PDIP       -       -       0.3       12       Wost       Wost       10//<br>Wost       Wost       Wost       10//<br>Wost       Wost       Wost       10//<br>Wost       Wost       Wost       Wost       10//<br>Wost       Wost       Wost       10//<br>Wost       10//<br>Wost       Wost       10//<br>Wost       10//<br>Wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Woss       Index set of the set of th                                                                                                 |
| WDSS         • Please see product summary (part I).         • Please see product summary (part I).         • Positive temperature coefficient. See curve BVDSS vs. TJ.         • Values of this parameter are often tenss/in rity of layer and size of device.         • Values of this parameter are often tenss/in rity of layer and size of device.         • Values of this parameter are often tenss/in rity of layer and size of the source : ±20V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WDBS       Polease see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary (part I).         Please see product summary (part I).       Please see product summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vois       Cost       input capacitance       -       220       300       pF       Vois       Vois       20.         Cost       Common source output capacitance       -       20       300       pF       Vois       20.       300       is the time       -       -       10.       Vois       20.       300       is the time       -       -       10.       Vois       20.       300       is the time       -       -       10.       Vois       20.       300       is the time       -       -       10.       Vois       20.       300       is the time       -       -       10.       Vois       20.       300       is the time       -       -       10.       Vois       20.       300       is the time       -       -       10.       Vois       20.       300.       is the time       -       -       10.       Vois       20.       300.       is the time       -       -       10.       Vois<       20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VDSS       Common source output capacitance       -       70       120       pF       VDSS         VDSS       -       -       10       -       -       10       -       -       10       -       -       10       -       -       10       -       -       10       -       -       10       -       -       10       -       -       10       -       -       10       -       -       -       10       -       -       10       -       -       -       10       -       -       -       -       -       10       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V <sub>DSS</sub> • Please see product summary (part I). • Please see product summary (part I). • Please see product summary (part I). • VDOUSTING AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| V <sub>DSS</sub> • Please see product summary (part I). • Please see product summary (part I). • Please see product summary (part I). • VDOUSTING AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Voice       Vice       200, 1         Vice       Vice       200, 2         Vice       200, 1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V <sub>DSS</sub> Please see product summary (part I). Positive temperature coefficient. See curve BV <sub>DSS</sub> vs. T <sub>J</sub> . I description I des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V <sub>DSS</sub> Please see product summary (part I). Positive temperature coefficient. See curve BV <sub>DSS</sub> vs. T <sub>J</sub> . Since the gate is insulated from the ress device by a silicon dioxide insulating lag this parameter depends on thick-ness/i rity of layer and size of device. Measured at maximum permissible volt from gate to source: ±20V. Values of this parameter are often tens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V <sub>DSS</sub> Please see product summary (part I). Positive temperature coefficient. See curve BV <sub>DSS</sub> vs. T <sub>J</sub> . Igss I gess V bit is parameter depends on thick-ness/is rity of layer and size of device. Measured at maximum permissible volt from gate to source: ±20V. V Values of this parameter are often tens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>V<sub>ss</sub> Diode forward voltage drop 1.6 V V<sub>cs</sub> = 0V, I,<br/>t<sub>v</sub> Reverse recovery time - 300 - ns V<sub>cs</sub> = 0V, I,<br/>t<sub>v</sub> Reverse recovery time - 300 - ns V<sub>cs</sub> = 0V, I,<br/>V<sub>cs</sub> = 0V, I,<br/>I<sub>sss</sub></li> <li>Please see product summary (part I).</li> <li>Positive temperature coefficient. See<br/>curve BV<sub>DSS</sub> vs. T<sub>J</sub>.</li> <li>Since the gate is insulated from the ress<br/>device by a silicon dioxide insulating lay<br/>this parameter depends on thick-ness/i<br/>rity of layer and size of device.</li> <li>Measured at maximum permissible volt<br/>from gate to source: ±20V.</li> <li>Values of this parameter are often tens</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>V<sub>DSS</sub></li> <li>Please see product summary (part I).</li> <li>Positive temperature coefficient. See curve BV<sub>DSS</sub> vs. T<sub>J</sub>.</li> <li>Since the gate is insulated from the rest device by a silicon dioxide insulating lay this parameter depends on thick-ness/in rity of layer and size of device.</li> <li>Measured at maximum permissible volt from gate to source: ±20V.</li> <li>Values of this parameter are often tens</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>V<sub>DSS</sub></li> <li>Please see product summary (part I).</li> <li>Positive temperature coefficient. See curve BV<sub>DSS</sub> vs. T<sub>J</sub>.</li> <li>Since the gate is insulated from the res device by a silicon dioxide insulating lay this parameter depends on thick-ness/in rity of layer and size of device.</li> <li>Measured at maximum permissible volt from gate to source: ±20V.</li> <li>Values of this parameter are often tens</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Measured at maximum permissible volt from gate to source: ±20V.</li> <li>Values of this parameter are often tens</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Values of this parameter are often tens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Values of this parameter are often tens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Voltage required from gets to equires to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Voltage required from gate to source to turn on device to certain I<sub>D</sub> current value given in "condition" column.</li> <li>I_ measurement condition is low for small</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>I<sub>D</sub> measurement condition is low for small<br/>die and higher for larger die.</li> <li>mass production. Consult factory for sci<br/>ing lower values.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### **Electrical Characteristics**

## **Electrical Characteristics** ( $T_A = 25^{\circ}C$ unless otherwise specified)

|  |                                                     | Sym                                           | Parameter                                                                                                   |                                   | Min | Тур  | Max  | Units                                                                      | Conditions                                                        |
|--|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|-----|------|------|----------------------------------------------------------------------------|-------------------------------------------------------------------|
|  |                                                     | BV <sub>DSS</sub> Drain-to-source breakdown v |                                                                                                             | preakdown voltage                 | 50  | -    | -    | V                                                                          | V <sub>GS</sub> = 0V, I <sub>D</sub> = 10mA                       |
|  |                                                     | V <sub>GS(th)</sub>                           | Gate threshold voltage       Change in V <sub>GS(th)</sub> with temperature       Gate body leakage current |                                   | 0.8 | -    | 2.4  | V                                                                          | $V_{GS} = V_{DS}, I_{D} = 10 \text{mA}$                           |
|  |                                                     | $\Delta V_{GS(th)}$                           |                                                                                                             |                                   | -   | -4.3 | -5.5 | mV/ <sup>o</sup> C                                                         | $V_{GS} = V_{DS}, I_{D} = 10 \text{mA}$                           |
|  | [                                                   | I <sub>GSS</sub>                              |                                                                                                             |                                   | -   | 1.0  | 100  | nA                                                                         | $V_{GS} = \pm 20V, V_{DS} = 0V$                                   |
|  |                                                     |                                               |                                                                                                             | a drain aurrant                   | -   | -    | 10   | μA                                                                         | V <sub>GS</sub> = 0V,<br>V <sub>DS</sub> = Max Rating             |
|  |                                                     | I <sub>DSS</sub>                              | Zero gale voltage                                                                                           | Zero gate voltage drain current - | -   | -    | 1.0  | mA                                                                         | $V_{DS} = 0.8$ Max Rating<br>$V_{GS} = 0V$ , $T_A = 125^{\circ}C$ |
|  |                                                     | I <sub>D(ON)</sub>                            | On-state drain current                                                                                      |                                   | 3.0 | 14   | -    | А                                                                          | V <sub>GS</sub> = 10V, V <sub>DS</sub> = 5.0V                     |
|  |                                                     | Static                                        | TO-92 and PDIP                                                                                              | -                                 | -   | 0.45 | - Ω  | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 1.5A                              |                                                                   |
|  | R <sub>DS(ON)</sub> drain-to-<br>source<br>on-state |                                               | TO-243AA                                                                                                    | -                                 | -   | 0.45 |      | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 0.75                              |                                                                   |
|  |                                                     |                                               | TO-92 and PDIP                                                                                              | -                                 | -   | 0.3  |      | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.0A                               |                                                                   |
|  |                                                     |                                               | resistance                                                                                                  | TO-243AA                          | -   | -    | 0.3  |                                                                            | V <sub>GS</sub> = 10V, I <sub>D</sub> = 1.5A                      |
|  |                                                     | $\Delta R_{DS(ON)}$                           | Change in R <sub>DS(ON)</sub> with temperature                                                              |                                   | -   | 0.85 | 1.2  | %/ºC                                                                       | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.0A                      |
|  |                                                     | G <sub>FS</sub>                               | Forward transcor                                                                                            | 1.0                               | 1.5 | -    | mho  | V <sub>DS</sub> = 25V, I <sub>D</sub> = 2.0A                               |                                                                   |
|  |                                                     | CISS                                          | Input capacitance                                                                                           |                                   | -   | 220  | 300  | pF                                                                         | V <sub>GS</sub> = 0V,<br>V <sub>DS</sub> = 25V,                   |
|  |                                                     | C <sub>oss</sub>                              | Common source output capacitance                                                                            |                                   | -   | 70   | 120  |                                                                            |                                                                   |
|  | C <sub>RSS</sub>                                    | Reverse transfer capacitance                  |                                                                                                             | -                                 | 20  | 30   | 1    | f = 1.0MHz                                                                 |                                                                   |
|  | t <sub>d(ON)</sub>                                  | Turn-on delay time                            |                                                                                                             | -                                 | -   | 10   | ns   | V <sub>DD</sub> = 25V,<br>I <sub>D</sub> = 2.0A,<br>R <sub>GEN</sub> = 10Ω |                                                                   |
|  | t,                                                  | Rise time                                     |                                                                                                             | -                                 | -   | 15   |      |                                                                            |                                                                   |
|  | t <sub>d(OFF)</sub>                                 | Turn-off delay time                           |                                                                                                             | -                                 | -   | 25   |      |                                                                            |                                                                   |
|  |                                                     | t <sub>f</sub>                                | Fall time                                                                                                   |                                   | -   | -    | 25   | 1                                                                          | GEN                                                               |
|  |                                                     | V <sub>SD</sub>                               | Diode forward vo                                                                                            | Itage drop                        | -   | -    | 1.6  | V                                                                          | V <sub>GS</sub> = 0V, I <sub>SD</sub> = 1.5A                      |
|  |                                                     | t <sub>rr</sub>                               | Reverse recover                                                                                             | -                                 | 300 | -    | ns   | V <sub>GS</sub> = 0V, I <sub>SD</sub> = 1.0A                               |                                                                   |

#### I<sub>DSS</sub>

- This is the leakage current from drain to source when device is fully turned off.
- Measured by applying maximum permissible voltage between drain and source (BV<sub>DSS</sub>) and gate shorted to source (V<sub>GS</sub> = 0).
- Special electrical screening possible at lower values since max. published values are higher to achieve practical testing speeds.

#### I<sub>D(ON)</sub>

- Defined as the minimum drain current when device is turned on.
- Supertex measures I<sub>D(ON)</sub> min. at V<sub>GS</sub> = 10V.

Although Supertex specifies a typical value of  $I_{D(ON)}$ , the designer should use minimum value as the worst case.

## $\Delta R_{DS(ON)}$

- Positive temperature coefficient.
- Enhances stability due to current sharing during parallel operation.

## R<sub>DS(ON)</sub>

- Drain to source resistance measured when device is partially turned on at V<sub>GS</sub> = 4.5V, and fully turned on at V<sub>GS</sub> = 10V.
- Designers should use maximum values for worst case condition.
- When better turn on characteristics (ie., low R<sub>DS(ON)</sub>) is required for logic level inputs, Supertex's low threshold TN & TP devices may be used.
- Typical value of R<sub>DS(ON)</sub> can be calculated at various V<sub>GS</sub> conditions by using output characteristics or saturation characteristics family of curves (I<sub>D</sub> vs. V<sub>DS</sub>).
- R<sub>DS(ON)</sub> increases with higher drain currents.
   R<sub>DS(ON)</sub> curve has a slight slope for low values of I<sub>D</sub>, but rises rapidly for high values.

### **Switching Characteristics**

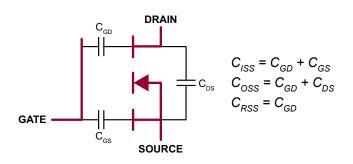
- Extremely fast switching compared to bipolar transistors, due to absence of minority carrier storage time during turn off.
- Switching times depend almost totally on interelectrode capacitance, R<sub>S</sub> (source impedance) and R<sub>L</sub> (load impedance) as shown on test circuit.

#### Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise specified)

| Sym                 | Parameter                                             |                                 | Min  | Тур  | Max                | Units                                                                      | Conditions                                                      |
|---------------------|-------------------------------------------------------|---------------------------------|------|------|--------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|
| BV <sub>DSS</sub>   | Drain-to-source I                                     | 50                              | -    | -    | V                  | V <sub>GS</sub> = 0V, I <sub>D</sub> = 10mA                                |                                                                 |
| V <sub>GS(th)</sub> | Gate threshold v                                      | 0.8                             | -    | 2.4  | V                  | $V_{GS} = V_{DS}, I_{D} = 10m/$                                            |                                                                 |
| $\Delta V_{GS(th)}$ | Change in V <sub>GS(th)</sub>                         | -                               | -4.3 | -5.5 | mV/ <sup>o</sup> C | $V_{GS} = V_{DS}, I_{D} = 10m/$                                            |                                                                 |
| I <sub>GSS</sub>    | Gate body leaka                                       | -                               | 1.0  | 100  | nA                 | $V_{GS} = \pm 20V, V_{DS} = 0$                                             |                                                                 |
|                     |                                                       |                                 | -    | -    | 10                 | μA                                                                         | V <sub>GS</sub> = 0V,<br>V <sub>DS</sub> = Max Rating           |
| I <sub>DSS</sub>    |                                                       | Zero gate voltage drain current |      | -    | 1.0                | mA                                                                         | $V_{DS} = 0.8$ Max Ratin<br>$V_{GS} = 0V, T_{A} = 125^{\circ}0$ |
| I <sub>D(ON)</sub>  | On-state drain cu                                     | 3.0                             | 14   | -    | Α                  | V <sub>GS</sub> = 10V, V <sub>DS</sub> = 5.0                               |                                                                 |
|                     | Static                                                | TO-92 and PDIP                  | -    | -    | 0.45               | Ω                                                                          | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 1.5/                   |
|                     | drain-to-<br>source<br>on-state                       | TO-243AA                        | -    | -    | 0.45               |                                                                            | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 0.75                   |
| R <sub>DS(ON)</sub> |                                                       | TO-92 and PDIP                  | -    | -    | 0.3                |                                                                            | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.0A                    |
|                     | resistance                                            | TO-243AA                        | -    | -    | 0.3                |                                                                            | V <sub>GS</sub> = 10V, I <sub>D</sub> = 1.5A                    |
| $\Delta R_{DS(ON)}$ | Change in R <sub>DS(OI</sub>                          | -                               | 0.85 | 1.2  | %/ºC               | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.0A                               |                                                                 |
| G <sub>FS</sub>     | Forward transconductance                              |                                 | 1.0  | 1.5  | -                  | mho                                                                        | V <sub>DS</sub> = 25V, I <sub>D</sub> = 2.0A                    |
| C <sub>ISS</sub>    | Input capacitance<br>Common source output capacitance |                                 | -    | 220  | 300                | pF                                                                         | V <sub>GS</sub> = 0V,<br>V <sub>DS</sub> = 25V,                 |
| C <sub>oss</sub>    |                                                       |                                 | -    | 70   | 120                |                                                                            |                                                                 |
| C <sub>RSS</sub>    | Reverse transfer capacitance                          |                                 | -    | 20   | 30                 |                                                                            | f = 1.0MHz                                                      |
| t <sub>d(ON)</sub>  | Turn-on delay tin                                     | -                               | -    | 10   | ns                 | V <sub>DD</sub> = 25V,<br>I <sub>D</sub> = 2.0A,<br>R <sub>GEN</sub> = 10Ω |                                                                 |
| t,                  | Rise time                                             | -                               | -    | 15   |                    |                                                                            |                                                                 |
| t <sub>d(OFF)</sub> | Turn-off delay tin                                    | -                               | -    | 25   |                    |                                                                            |                                                                 |
| t <sub>f</sub>      | Fall time                                             | -                               | -    | 25   |                    |                                                                            |                                                                 |
| V <sub>SD</sub>     | Diode forward vo                                      | Itage drop                      | -    | -    | 1.6                | V                                                                          | V <sub>GS</sub> = 0V, I <sub>SD</sub> = 1.5A                    |
| t <sub>rr</sub>     | Reverse recover                                       | -                               | 300  | -    | ns                 | V <sub>GS</sub> = 0V, I <sub>SD</sub> = 1.0A                               |                                                                 |

## $\mathbf{G}_{\mathrm{FS}}$

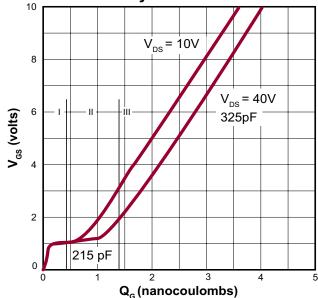
- Represents gain of the device and can be compared to H<sub>FE</sub> of a bipolar transistor.
- Value is the ratio of change in I<sub>D</sub> for a change in V<sub>GS</sub>:


$$G_{FS} = \frac{\Delta I_D}{\Delta V_{GS}}$$

Rises rapidly with increasing I<sub>D</sub>, and then becomes constant in the satur-ation region. See G<sub>FS</sub> vs. I<sub>D</sub> curve.

### $\mathbf{C}_{\mathrm{ISS}}, \mathbf{C}_{\mathrm{RSS}}, \mathbf{C}_{\mathrm{OSS}}$

- Supertex interdigitated structures have lowest C<sub>ISS</sub> in the industry for comparable die sizes and exhibit excellent switching characteristics.
- Values of these capacitances are high at low voltages across them. Please see capacitance vs V<sub>DS</sub> curves for details.
- Negligible effect of temperature on capacitances.
- The following equation may be used for calculating effective value of C<sub>ISS</sub> with "Miller Effect."


$$C_{ISS} = C_{GS} + (1 + G_{FS} \cdot R_L) C_{GD}$$



## $\mathbf{T}_{d(ON)}$

During this period, the drive circuit charges  $C_{\rm ISS}$  up to  $V_{\rm GS(TH)}.$  Since no drain current flows prior to turn on,  $V_{\rm DS}$  and consequently  $C_{\rm ISS}$  remain constant. Region I on the  $V_{\rm GS}$  vs.  $Q_{\rm G}$  curve shows linear change in voltage with increasing  $Q_{\rm G}.$ 

#### **Gate Drive Dynamic Characteristics**



#### **Switching Characteristics**

When C<sub>ISS</sub> is driven to a voltage exceeding V<sub>GS(TH)</sub>, conduction from drain source begins. G<sub>FS</sub> increases causing increase in C<sub>ISS</sub> due to "Miller Effect" charge requirements to Region II increase considerably. Gain stabilizes in Region III and "Miller Effect" is nullified, resulting in a linear change in V<sub>GS</sub> for increase in Q<sub>G</sub>.

#### Electrical Characteristics (T<sub>a</sub> = 25°C unless otherwise specified)

| Sym                 | Parameter                                           |                          | Min  | Тур  | Max                | Units                                                      | Conditions                                                 |
|---------------------|-----------------------------------------------------|--------------------------|------|------|--------------------|------------------------------------------------------------|------------------------------------------------------------|
| BV <sub>DSS</sub>   | Drain-to-source I                                   | 50                       | -    | -    | V                  | V <sub>GS</sub> = 0V, I <sub>D</sub> = 10mA                |                                                            |
| V <sub>GS(th)</sub> | Gate threshold v                                    | 0.8                      | -    | 2.4  | V                  | $V_{GS} = V_{DS}, I_{D} = 10 \text{mA}$                    |                                                            |
| $\Delta V_{GS(th)}$ | Change in V <sub>GS(th)</sub>                       | -                        | -4.3 | -5.5 | mV/ <sup>o</sup> C | $V_{GS} = V_{DS}, I_{D} = 10 \text{mA}$                    |                                                            |
| I <sub>GSS</sub>    | Gate body leaka                                     | -                        | 1.0  | 100  | nA                 | $V_{GS}$ = ±20V, $V_{DS}$ = 0V                             |                                                            |
|                     | Ince Zero gate voltage drain current                |                          | -    | -    | 10                 | μA                                                         | V <sub>GS</sub> = 0V,<br>V <sub>DS</sub> = Max Rating      |
| DSS                 |                                                     |                          | -    | -    | 1.0                | mA                                                         | $V_{DS}$ = 0.8 Max Rating,<br>$V_{GS}$ = 0V, $T_A$ = 125°C |
| I <sub>D(ON)</sub>  | On-state drain cu                                   | 3.0                      | 14   | -    | A                  | V <sub>GS</sub> = 10V, V <sub>DS</sub> = 5.0V              |                                                            |
|                     | Static                                              | TO-92 and PDIP           | -    | -    | 0.45               | Ω                                                          | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 1.5A              |
|                     | R <sub>DS(ON)</sub> drain-to-<br>source<br>on-state | TO-243AA                 | -    | -    | 0.45               |                                                            | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 0.75A             |
| R <sub>DS(ON)</sub> |                                                     | TO-92 and PDIP           | -    | -    | 0.3                |                                                            | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.0A               |
|                     | resistance                                          | TO-243AA                 | -    | -    | 0.3                |                                                            | V <sub>GS</sub> = 10V, I <sub>D</sub> = 1.5A               |
| $\Delta R_{DS(ON)}$ | Change in R <sub>DS(OF</sub>                        | N) with temperature      | -    | 0.85 | 1.2                | %/ºC                                                       | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.0A               |
| G <sub>FS</sub>     | Forward transco                                     | Forward transconductance |      | 1.5  | -                  | mho                                                        | V <sub>DS</sub> = 25V, I <sub>D</sub> = 2.0A               |
| CISS                | Input capacitanc                                    | Input capacitance        |      | 220  | 300                | pF                                                         | $V_{GS} = 0V,$<br>$V_{DS} = 25V,$                          |
| C <sub>oss</sub>    | Common source output capacitance                    |                          | -    | 70   | 120                |                                                            |                                                            |
| C <sub>RSS</sub>    | Reverse transfer capacitance                        |                          | -    | 20   | 30                 |                                                            | f = 1.0MHz                                                 |
| t <sub>d(ON)</sub>  | Turn-on delay tin                                   | -                        | -    | 10   | ns                 | $V_{DD} = 25V,$<br>$I_{D} = 2.0A,$<br>$R_{GEN} = 10\Omega$ |                                                            |
| t,                  | Rise time                                           | -                        | -    | 15   |                    |                                                            |                                                            |
| t <sub>d(OFF)</sub> | Turn-off delay tin                                  | -                        | -    | 25   |                    |                                                            |                                                            |
| t <sub>f</sub>      | Fall time                                           | -                        | -    | 25   |                    |                                                            |                                                            |
| V <sub>SD</sub>     | Diode forward vo                                    | oltage drop              | -    | -    | 1.6                | V                                                          | V <sub>GS</sub> = 0V, I <sub>SD</sub> = 1.5A               |
| t <sub>rr</sub>     | Reverse recover                                     | Reverse recovery time    |      |      | -                  | ns                                                         | V <sub>GS</sub> = 0V, I <sub>SD</sub> = 1.0A               |

#### t<sub>d(OFF)</sub>

t,

The sequence of events now begins to reverse. C<sub>ISS</sub> discharges through R<sub>GEN</sub>. The rise of V<sub>DS</sub> is initially slowed by increase of output capacitance.

#### t,

V<sub>DS</sub> rises as the load resistor charges the output capacitance.

#### $V_{SD}$

- This is the forward voltage drop of the parasitic diode between drain and source.
- Diode may be used as a commutator in H bridge configurations or in a synchronous rectifier mode. Excessive fly back voltages may be clamped by this diode in a totem pole configuration.

#### t<sub>rr</sub>

- The reverse recovery time is the time needed for the carrier gradient, formed during forward biasing, to be depleted when the biasing is reversed.
- An external fast recovery diode may be connected from drain to source to improve recovery time.

**Supertex inc.** does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2012 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

